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For certain nonholonomic and holonomic mechanical systems we have obtained
the existence conditions for the particular integral being a linear bundle of the
Hamiltonian and the momenta. The conditions are simplified for a certain class
of holonomic systems, containing the well-known [1] case of the particular Jaco-
bi integral, An example of the fulfillment of these conditions is a variant of the
restricted problem of translation-rotational motion of a gyrostat in a Newtonian
force field,

1., We consider a mechanical system S with the Lagrangian L = I' + U + N.
The linear function N of generalized velocities is the Meyer potential [2—4] of certain
electromagnetic and gyroscopic forces. We separate the system S with the position co-
ordinate vector y = (z;, z,)* into subsystems S’ and S” with vectors x = (z;)*
and z = (z,)*

i=1,2, ..,Lr=12, ... 1< LILpidimy=14p=n
We write the Lagrangian of system S as the sum
L=L + L'+ L+ L" + L* + L 1
Ly =i ¢, Y)aizy', U =L L[>0 @ i=12....0
Ly = lJ" @, y) x:i., Ly = 1/2lrs” (¢ Y) Zy 24, lrs”= lsr” (r,s=1,2,...p
Ly =1.(ty) %, L* = Ly (8, y) %20 Ly = Ly (¢, y)s [=4df/dt

Here and below summation is carried out over like indices and the superscript zero sig-
nifies the result of a substitution

P=7FrEx x)=7(txx, (), v(E)
(z=r(),z =dr/dt =v ()

We denote r (f), v (t) as the known motion of subsystem S”, for which the cylinder
z = r (t), z = v (¢) is an invariant set of motions of .§. In particular, the motion
ry, I, of subsystem S” possesses this property if system § has the particular invari-
ants h, (s, r =1,2,...p)

hy (t,2z) =0, det|dh, |0z, [0 (hy(t, 1, (t)) =0)

or if the motions of S’ have no effect on §”,
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We restrict consideration to the system satisfying the conditions

(0lis*/axj)° = 01 (lis*vs)o =0 t/=1,2....0 (1.2)
(0li* [ 02 + 013,* [ 02,)* =0, (OL/0tY =0 (r,s=1.2,..., p)

along the motion r (f), v (t) of subsystem S” . The last group of equalities in (1. 2)
we shall call the autonomy conditions. They are satisfied, for instance, when oL | 9t =
0. The remaining conditions are satisfied, in particular, when L* = 0.

Let us assume that § is subject only to the ideal linear nonholonomic constraints

Qai (b, Y) O%s + bas (8, ¥) 02, =0 (2 =1,2,. ., m< n—1)
Then along r (¢), v (t) we have the conditions on the virtual displacements
aaioaxi -+ basoéz; =0 (aaio = Qqi (t, X, r): 2s. = Das (t, x, l’)) (1.3)

If the system is holonomic, m = 0. We assume that the variations
)
by =e( +u), v, ) (Y ur+0) (1.4
i=1
satisfy Egs. (1.3) for arbitrary sufficiently smooth functions u; (¢). Then the variations
(1.4) are the virtual displacements of system. .S along the motion r (t), » () of sub-

system §”. This condition is satisfied when
s’ =0, by v, =0,rank | b,° | = m < p — 1

We assume that the nonpotential generalized forces Q; (¢, y, y) and Q%(t, ¥, ¥)
do not act on displacements (1. 4), i.e.

(" + w) @ + v0Q,/° = (1.9)
We examine only the mechanical systems S for which displacements (1.4) are virtual

and conditions (1. 2) and (1. 5) are satisfied. We call them Jacobi mechanical systems.
A holonomic system [1] satisfies conditions (1. 2) and (1. 5).

2. Let us consider the expression, linear with respect to the Hamiltionian and the

momenta, of the Jacobi invariant type [1] .

I= (L' + Ly — Loy +us; (1) 0L/ 9"y — \ ko (v) dv 2.1

0

where £ (T) is an arbitrary sufficiently smooth function. Let us determine the conditions
which the Jacobi mechanical system and the functions u; and h must satisfy in order for
I to be an invariant of the motion of S along the trajectory z = r (¢), 2" = v ()

of subsystem S”. From the general equation of dynamics

d (oL oL d (9L oL
[ (35) 3 — oo (35— —0 =0
with due regard to (1. 1) — (1. 5) and (2. 1), we obtain the equality
dl [ dt = dy (¢, 2) 2’7" + A (8, )2 + do (£, 2) (2.2

dig = uj0ly [ 8z, Ly = (ba)° = by [ >0
dk == Uj alk/c?x, -+ u{lik, lk = (lk’)o G, J, k=1,2,..., 1))
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dy = u;0R° [ 0z; — OR° [ 0t + u;'l; + v, (0K | 0z,)° — h(2)

R=Ly+ L' +L, B =(LS+L 4Ly, K=L’+L
(s,r=1,2,...,p)

For the particular invariant (2. 1) of the motion of system § to exist it is necessary
and sufficient to satisfy the equations

Xy n) =0 (Xy(f) =usof /0z;, iy j, k=1, 2,...,0) (23
X, (lk) = — Ul
X, (R =h —u'l; — v, 0K | 0z))° (X, = X, — 0/ 6t)
for which the quantity (2. 2) vanishes, With due regard to (1. 2) and to the relation
af° | ot = (9f 1 3ty + v, (3f | 9z,)° + v, (0f / 0z,)°
we write the autonomy conditions in (1. 2) in the following form:
Ol |0t = v, (0l [ 02,)° (i, k=1,2,...,0) (2.4)
Al | 0t = v, (0l | 02,)° 4 v, (I
OR° [ 3t = v, (OR | 0z,)° + v, (8R | 03,°)°

From the first groups of equations in (2. 3) and in (2. 4) we have the system

Xi(fa)=0, Xu(fa)=0 (@ k=1,2,...,0 (2.9)

Xip =0/0t + w;, (¢, x)0/0f, wip = v,(0li /0z,)°, f =1l

where the l;; (f, ) satisfy the equalities f;; (£, X, l;») = 0. For simplicity we
assume that Egs. (2. 5) comprise a complete system [5, 6]. For this it is necessary and
sufficient that each commutator Z;, = X, (X,;) —X; (X;;) satisfies the equality
Zin =AX; 4+ pXin A=A (¢ x f), p=p (¢ x, f)) with arbitrary func-
tions A and 1. Hence we obtain the equations

ur =A@ w, s (% X, (z,.k')>° -0 (2.6)

Mgt X, H=A(), pi(t,x N=0 G, k=1,2,....Ls=12....p)

Substituting the general solution of the first group of equations in (2. 6)
t

u; =cw(t), c¢;=const, w=exp [S A(T) dr] (e=1(e)*5=0) (2.7
0

into the second group, we obtain the compatability conditions for the first groups of equa-
tions in (2.3) and (2. 4)

./ @ n\° o . .
vs<-5ZX(lik)> =0 <X=cja—¢;?;z,],k=1,2,...,l) (2.8)

In order to satisfy the compatability conditions (2. 8) and the first group of equations in
(2.3) it is sufficient to assume E, =- ¢,x, as an ignorable coordinate of function L)

XUh=0 (. k=1.2....0 (2.9
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Let us accept conditions (2. 9). Then for /; h" we have the expressions
Ly =mp (8 8, 2) (Mg =mp, | mip | > 0) (2.10)

in which the coordinates of vector §' = (£,, . . ., £,)* are specified by a transforma-
tion ' = Pz of the form

Em = Pmi%i» Pmi=const, P =|pmi| (m=23,..., 1 (2.11)
Pmic; =0, rank P =1—1

By virtue of (2. 11) the functions m;; (f, Px, z) satisfy the first group of equations
in (2. 4).
With due regard to (2. 7) and (2. 10) the remaining equations in (2. 3) take the form

X (lk) + }\/ (t)ijhjo = O (mh]-° ES mhj (t, §I, T (t)) = mjk") (2. 12)
X (R 4+ A (f) cjl; — v, (OR | 62)° — H —0 (H (i) — hw™)
k,i=1,2,...,l; S=1,2,. sy, P

Analogously to the preceding we obtain the compatability conditions for Eqs. (2. 12) and
(2.4) which are expressed by the equalities

2, X (01, | 02)° + ¢;0 (Amy ) | 9t — 0 (2.13)
v, X! (3R | 02, + ¢;0 (M) / 0t + v,R} — H' — 0.

X! —c;0/0x; — /0t R} =X (R [0z°)° — (3R | 9z,
k,i=1,2,...,0 s=1,2,...,p

Formulas (2, 2), (2. 3), (2. 7), (2. 10) and (2. 11) convey the sense of the notation adopted.
By combining the assumptions made, we obtain the following statement.

If functions A° (f) and A° (f) and constants ¢,° (¢® = 0) exist for which the equal-
ities (2. 9),(2. 12) and (2. 13) are satisfied for the Jacobi mechanical system, then system

S has the invariant ¢
I = (Ly 4 Ly" — Lg)° + c,°w° (t) (OL | 0z¢’)° — S ke (t)dr (2.14)
0

along the motion r (f) =z, v (f) =z’ . Expression (2. 1) takes the form (2. 14) on the
strength of equalities (2. 6). We note that equalities (2. 4), equivalent to the autonomy
conditions in (1. 2), are satisfied by the Jacobi mechanical system by definition, The
statement is preserved if assumptions (1. 4) and (1. 5) are replaced by the following. It
is sufficient that the variations 8% = e (z," + c,w’ (£), v, (£))* satisfy Eqs.(1.3)
and that the equality ¢

(2 + 6P (1) 0 + v, (1) Q,°=0 (v (1) = exp|A°(v) dv)

0

be satisfied for the nonpotential generalized forces.

3. The existence conditions for the particular invariant (2. 14) simplify for a holo-
nomic potential system S* satisfying the following conditions., Let the functions (1. 1)
for system S* satisfy the identities

L* =0, oL/ot=0, 9L, /09z,=0, 0L,"/0dx, =0 3.1)
o=1,2;s=1,2,...,p k=1,2,...,1
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We assume that to the motion z = r (£), z° = v (¢) of subsystem S,* there corre-
sponds an invariant set of motions of S* ,namely, the cylinder z =71 (#), z"=v(¢).
Since conditions (1. 2), (1.4) and (1. 5) are satisfied, system §* is a Jacobi mechanical
system,

Let the coordinate &, = cyzj be ignorable for L," and L,’

c 0L, | 0z, =0, ¢,0L) |0z, =0 (cp =const, ¢ +=0) (3.2
We set A (£) = 0. By virtue of identities (3. 1) and (3. 2) conditions (2. 12). and (2. 13)
are reduced to the two equalities

X(Lo)°—vs(%§—)°—h= 0 (3.9)

a " ”
<X:c]'a_z.ij=L2 + Ly" + Ly)

=] ]
X <vs %) _ —;—t<v %) —K=0 (X' =X — 5 K=L+ L)
Using the statement obtained, we arrive at the following conclusion for system S* If
equalities (3. 2) and (3. 3) are satisfied for ¢, = cy*and & (f) = h* (f), then the in-
variant t

[ =Ly + (L — Lo — *d(Ly’ + Ly) [ 0y — ¥ (mydv (3.9)

0

exists along the motion being examined z = r (f), z° = v (f) of subsystem S,*.
Systems of form S* include the one considered in [1]. They generalize the latter in the
following respects. For them the force function is examined in the general form and the
conditions L,” = 0 and L,” = 0 are not needed. In addition, the particular motion
r (£), v (¢) is taken in the general form for S o¥and the part of expression (3. 4), linear
with respect to the momenta, is not necessarily a projection [1] of the moment of mo-
mentum of subsystem S,*.

4, Examples. Using the results obtained, let us determine the form and the exist-

ence conditions for invariant (3. 4) for two gyrostatic systems in the case S*. As a first
example we consider a gyrostat S, moving in the gravitational field of a spheroid with
a fixed center of mass o,. We assume [3] that the spheroid, a rigid body, rotates around
a fixed symmetry axis o,y. The unit vector % lies in the plane 0;5% of a fixed trihed-
ron o,En¢ and makes a constant angle ; with the unit vector § (cos i = &- ¥ is the scalar
product of § and ¥). The gyrostat S, is formed [7, 8] by a nondeformable shell S,
containing a 2v-dimensional holonomic stationary system S,° with a constant mass
distribution in §,° The position of the principal central trihedron oseie;e5 of gyrostat
S, relative to o0,ENL is determined by the radius-vector z = (z,, z,, z3)* of the center
of mass of S; with the projections z; onto 0,&n{ and with the Euler angles ¢ = ¢,
P =@ 0= g3, P = (P, P2» P2)* ( = 1, 2, 3). The projections of the vectors ¢ =
zlziland & and of the angular velocity @ of shell §,° onto o, ¢, ¢, ez are denoted by
ok, Lk 0 (k= 1, 2, 3). The position of system S,° in S,° is given by the vector q =
(qa)*, a=1, 2, « .. V.

Let us assume that the internal forces in '3, are determined by a potential N, of the

form
Ny = my (92, 93, @) O + Mg (P2, 93, @) 7" + No (. q. 2) 4.1)
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while the forces external to S; have the Newtonian gravitational potential — U/, (9, z).
We accept the usual inequalities 1|z |~1<€1, IR, 1 <€ 1, my <€ M,, where my and I are
the mass and maximum dimension of §;, and M, and R, are the mass and the polar ra-
dius of the spheroid. Then with great accuracy we can assume that the rotational motion
of §, has no influence on its translational motion and that the motion of S; has no in-
fluence on the rotation of the spheroid. Using this, we separate §; into a subsystem 5,
with vector x = (g;, ¢,)* and a subsystem S,” for which z = r (¢), 2" = v (1) is the
known motion of the center of mass of ;. The Lagrangian for §, has the form

L=1Gen?+ kjo; 4 To+ Yomg | 2" P4 Ny + U, (4.2)
Ly’ =16,0,2 4 ko, +Te, Ly = mo, 4-m,'q,’

Ly" =1omg|2' |2, Ly" =0, IL*=0, L= No+ U,

ky = 8ia (@,

T, ___1/2(1‘1‘3 (9) qa'qﬂ‘, "amﬁ >0 (k.7i=1,2,30a,8=1.2,...v)

(U < Gy are the principal moments of inertia of ;). For the separation being examined
we obtain the identities (3. 1) with due regard to (4. 1) and (4. 2), Since 9L, / &y =
aL," / #p = 0, we have that E, = ¢, is the ignorable coordinate of functions L," and
L,'. Consequently, S, is a subcase of system S*. Using equalities (3. 4),(4. 2) and con-
ditions (3. 3), we reach the following conclusion.

If a function % = h, (t) and a constant ¢, = ¢;* = 0 exist for which the inequalities

AW/ 0t — c*dW /[ op -+ hy' (1) = 0 (W= v; (8 (Ng+ Us)/ 82)°) (4.9
W — c;*dV /39 + hy (1) = 0(V = L° = (Ng+ U,)°)

are satisfied along the motion r (¢), v (¢) , then the rotational motion of gyrostat §; has
the invariant t
oGy * + kjw; + T+ Yamo | v P+ e1*; (M4 my) — Lo® — S he(v)dr (4.4)
0
M = G0y + ki, Gowg -+ kg, Gy - kg)* (k,]=1,2,3)
Here we have used notation (4. 1) — (4.3) and the equalities
oLy [y =M-§, cp*=0 (m=2,3,...,v+3

For §, we consider the case when S, is the Joukowski-Volterra gyrostat {7, 8, 10].
S, is a shell supporting three rotors whose axes have been fastened along oie, 0162, 0se3.
Let the shell act on the rotors only by pressure forces on their rotation axes. For S the
functions (4. 2) and (4. 1) have the form

L=1Yy(Axo* + g ps + molvI]H) + Uy Ny =0 (4.5)
0 <gk=const, Ag= Gx— gx>0, A = diag (4,, 4, 43)
p=go+ k k=g¢
T2 = 1/2gj‘1kj2, g = dlag (gl’ 321 g3)r q = (qlv q27 ‘13)*v pk (t) == Pk (to)
Using an approximate expression for the spheroid's gravitational potential [3], for
My 1R, (Cy — Ay) <€ 1 we obtain the asymptotics U, of force function U,
Ue = plz|"Yme 11 4 Yy (Co — Ag)Mo~2 X | 2|2 (1 — 3s2)] + (4. 6)
[ 272 (Go — */,P)}
woe=fMg, Co>> Ay, s= 9405 == |z | WWkzy, 26, = Gy + G, + G5, P = Gxog?



Existence conditions for the particular Jacobi integral 569

Here 7 is Gauss' constant, C, and A4, are the spheroid's moments of inertia relative
to the rotation axis o,y and to the equatorial axis,

Let us consider the following variant of the restricted [9, 10] problem of the translation-
rotational motion of gyrostat §,. We assume that the center of mass of §, moves with
Keplerian angular velocity w, = p'/r, ™2 on a circle of constant radius |z | = ro inthe
plane o,fn ; the vector ¥ lies in the plane o,E. and makes a constant angle ; withthe
unit vector § . This motion is the approximate solution

23 =r (1) =rgCostT, zz=r,(t) =rgsinT, z3=r3() =20 4.7)
T = o (t — t4) + uy, ty = const, us = const

of the equations of motion of the center of mass of gyrostat S,
mezj = oUy [ dzj (= 1, 2, 3)

which in the restricted formulation can be considered as the exact solution. The latter,
together with {7, replaced by function (4. 6), serves as the initial assumptions of the vari-
ant being examined of the restricted problem,

We set e 7 —@g, ha = 3,0 (Co — Ag)moM,~1 sin? i sin 2v
into conditions (4. 3). Substituting expressions (4.5) — (4.7) into them, we see that equal-
ities (4. 3) are satisfied. Therefore, the particular Jacobi invariant [1]

I = 1,4508* — 0,8 (Ao + p) + ¥,0,°Gxox* (4.8)
exists in the case being examined for the motion of §; We obtain expression (4. 8) from
(4.4) with due regard to equalities (4, 5) — (4. 7). Thus, in this variant of the motion of
S, the existence conditions (4. 3) for invariant (4. 8) are satisfied, We note that expres-
sion (4. 8), obtained under the asymptotics (4. 6) of the noncentral gravitational field,
coincides with the generalized energy integral [9, 10] in the case of a central field.
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