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For certain nonholonomic and holonomic mechanical systems we have obtained 
the existence conditions for the particular integral being a linear bundle of the 

Hamiltonian and the momenta. The conditions are simplified for a certainclass 

of holonomic systems, containing the well-known [1] case of the particular Jaco- 
bi integral. An example of the fulfillment of these conditions is a variant of the 
restricted problem of translation-rotational motion of a gyrostat in a Newtonian 
force field. 

1, We consider a mechanical system S with the Lagrangian L = T + U + N. 
The linear function N of generalized velocities is the Meyer potential [Z-4] ofcertain 
electromagnetic and gyroscopic forces. We separate the system S with the position co- 
ordinate vector y = (q, z,)* into subsystems s’ and S” with vectors x = (Xi)* 

and z = (z,)* 

i = 1, 2, . . ., 1; ?-= 1, 2, . . ., p; l<Z, l<p; dimy=Z+p=n 

We write the Lagrangian of system S as the sum 

L = Lz’ + L,’ + LzN + L,” + L* + Lo (1.1) 
LSJ’ = ‘/2Zij’(t, y)Xi’Xi’, Z,j’ = Zj;, IIZij'll>O (i, i=iv 2,. . ** 1) 

L1’ = zi’ (t, y)xi’, Lz” = y&.; (t, y) Zr’Zs’, I,,“= 1,; (r, s = 1, 2,. . .1 p 

L; = Z,(t, y) Zt’y L” = Zit(ty Y)Xi’Zt’* LIJ = L(j(tY y), I’ = ‘f Idt 

Here and below summation is carried out over like indices and the superscript zero sig- 
nifies the result of a substitution 

f” = f” (t, x, x’) = f (6 x, X0, r(t), y(t)) 
(z = 1 (t), z’ = dr / G?t = v (t)) 

We denote r (t), v (t) as the known motion of subsystem S”, for which the cylinder 
z = r (t), z’ = v (t) is an invariant set of motions of $. In particular, the motion 
r*, r.+_’ of subsystem S” possesses this property if system S has the particular invari- 
ants h, (s, F = 1,2, . . . p) 

h, (t, z) = 0, det 11 ah I dz,j # 0 (h, (t, r* (t)) zz 0) 

or if the motions of S’ have no effect on S”. 
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We restrict consideration to the system satisfying the conditions 

(ali,* / azj)O = O, (zis*u,)o = 0 (t, i = 1, 2, . ., 1) (1.2) 

(alit.*/ 82s + dzis* / dZr)* = O, (aL/ at)" = 0 (r., S = 1, 2, . ., p) 

along the motion r (t), v (t) of subsystem S” . The last group of equalities in (1.2) 
we shall call the autonomy conditions. They are satisfied, for instance, when 6’L / dt G 

0. The remaining conditions are satisfied, in particular, when Lx s 0. 
Let us assume that S is subject only to the ideal linear nonholonomic constraints 

aai(t,y)6zi+b,*(t,y)6z,=O (3L=1,2,...,m<n-1) 

Then along r (t), v (t) we have the conditions on the virtual displacements 

oai”6Xi + b,s”6z; = 0 (aai” = u,{ (t, X, r), bag0 = b,, (t, X, r)) (1.3) 

If the system is holonomic, m = 0. We assume that the variations 

6Y = &(xi’+Ui(t), v,(t)>* (1.4) 
i=l 

satisfy Eqs. (1.3) for arbitrary sufficiently smooth functions ui (t). Then the variations 

(1.4) are the virtual displacements of system. S along the motion r (t), v (t) of sub- 
system S”. This condition is satisfied when 

a,,” E 0, baPvd 3 0, rank 11 base 11 = m < p - 1 

We assume that the nonpotential generalized forces Qi (t, y, y’) and Q “,(t, y, Y’) 
do not act on displacements (1.4), i.e. 

(xi’ + ui) Qi” + v,Q,‘~ = 0 (1.5) 

We examine only the mechanical systems S for which displacements (1.4) are virtual 

and conditions (1.2) and (1.5) are satisfied. We call them Jacobi mechanical systems. 
A holonomic system [l] satisfies conditions (1.2) and (1.5). 

2, Let us consider the expression, linear with respect to the Hamiltionian and the 
momenta, of the Jacobi invariant type [l] 

I = (L2’ + L,” - L~)O + ui (t) (aL / a2q)o - \ h (z) df (2. 1) 

0 

where h (z) is an arbitrary sufficiently smooth function. Let us determine the conditions 

which the Jacobi mechanical system and the functions ur and h must satisfy in order for 
I to be an invariant of the motion of S along the trajectory z = r (t), Z’ = v (2) 

of subsystem S”. From the general equation of dynamics 

[++i$- Qi] axi + [-+).) - + Qs] 62, = 0 

with due regard to (1. 1) - (1. 5) and (2. l), we obtain the equality 

CzI / dt = dik(& X)Zi’.‘C; + d,(t, z)zr’ + 4 (t, 4 

dik = Uj alik / d%jl Zik = (Zi{)O = Zkir II zik (I > O 

dk = Uj azk / axj + Ui’Zik, Zk = (Zk’)” (i, i, k = 1, 2,. . , 1) 

(2.2) 
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d, = ujaR’/axj- aR” / at + U(Zi + u,’ (azc / az,)O - h (t) 

R = L," + L; + L,, R" = (L; + L1" + LJ, K = L; + LL 
(s, r = 1, 2, . . ., p) 

For the particular invariant (2.1) of the motion of system s to exist it is necessary 
and sufficient to satisfy the equations 

X1 (lik) = 0 (X, (f) = 7.+af / azj, i, j, k = 1, 2, . . ., 1) (2.3) 

xr (Zk) = - Ui’Zik 

X, (R”) = h - ui’zi - 21; (aK / a2,y (x, = x, - a / at) 
for which the quantity (2.2) vanishes. With due regard to (1.2) and to the relation 

af / at = (af / at)o + vu, (af / ag + V; (al / a2;)o 
we write the autonomy conditions in (1.2) in the following form: 

aZi, /at = v, (alik' / aq (i, k = 1, 2, . . ., z) 

az, / at = U, (az; / az,)o + U; (zlrr*)o 

aRy at = U, (aR / az,)o + v,-(aR / a2;)o 

(2.4) 

From the first groups of equations in (2.3) and in (2.4) we have the system 

xr(fik) = 0, xik((fik) = 0 (i, k= 1, 2,. . ., 1) 
(2.5) 

X ik = a I at + Wik (t, x) a i af, Wik = iis(azikf 1 azs)o, f = lik 

where the Zik (t, Z) satisfy the equalities ftk (t, x, Zik) = 0. For simplicity we 
assume that Eqs. (2.5) comprise a complete system [5, 61. For this it is necessary and 

sufficient that each commutator Zih = Xik (Xl) -Xl (Xi,) satisfies the equality 

z rk = AX, + pX*k (h = Ai, (t x f), p= pih (t, x, f)) with arbitrary func- 
tions A and /L Hence we obtain the equations 

Ui’ = h (t) Ui, Us ( -&X1(Zir’) O= 0 
s > 

(2.6) 

hik(t, X, f) G h(t), pik(tp X, f) S 0 (i, k = 1. 2, . . ep 1; S = 1, 2, * * * P) 

Substituting the general solution of the first group of equations in (2.6) 

Ui = s?(t), Ci = const, ~=esp[+)dr] (c=(q)*#O) (2.7) 

into the second group, we obtain the compatability conditions for the first groups ofequa- 
tions in (2.3) and (2.4) 

Vi ( g X (li;))’ = 0 (X = cj & ; i, j, k = 1, 2, . . . , 1) (2.8) 
i 

In order to satisfy the compatability conditions (2.8) and the first group of equations in 
(2.3) it is sufficient to assume Er = ckxk as an ignorable coordinate of function Lz’ 

X(za’)=O (i. j,k=l, 2 ,...I 1) (2.9) 
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Let us accept conditions (2.9). Then for Zi a we have the expressions 

1. ’ 18 = mik (t, S’, z> (mik = mki, II mik II > 0) (2.10) 

in which the coordinates of vector E’ = (Es, . . ., El)* are specified by a transforma- 
tion E’ = PX of the form 

Enz = PmiXi, Pmi = const, P = 11 Pmi 11 (m = 2, 3, . ., 1) (2. 11) 

PmiCi = 07 rankP ~1-1 

By virtue of (2.11) the functions mik (t, Px, z) satisfy the first group of equations 

in (2.4). 
With due regard to (2.7) and (2.10) the remaining equations in (2.3) take the form 

X (Zk) + A (t)CjmkP = 0 (mkP = TTLkj (t, g’, r (t)) = mj,') (2.12) 

X (R") + h (t) Cjlj - Us (dR / dZ,)O - H = 0 (H (i) = I&W-‘) 

k, i= I, 2,. . ., 1; s = 1, 2, . . .,,p 

Analogously to the preceding we obtain the compatability conditions for Eqs. (2. 12) and 
(2.4) which are expressed by the equalities 

V,X (dl’k / f3is>” + Cjd (b?L~j”) / dt = 0 (2.13) 

u,X1 (815' / a~;>" + cjd (klj) / at + v,‘R,~ - H’ = 0. 

X1 = cjd / dxj - d / dt, R,1 = X (dR I &iyy - (dR / az,) 

k,j=l,2 ,..., 1; s=l,2 ,..., p 

Formulas (2.2), (2.3), (2.7), (2.10) and (2.11) convey the sense of the notation adopted. 
By combining the assumptions made, we obtain the following statement. 

If functions 3L” (t) and ho (t) and constants cko (co # 0) exist for which the equal- 
ities (2.9),(2.12) and (2.13) are satisfied for the Jacobi mechanical system, then system 

S has the invariant t 
I = (L,f + L; .- LO)0 + ~0~0 (t) (aL / axJ - 1 ho (T) a~ (2.14) 

0 
along the motion r (f) = z, v (t) = z’ . Expression (2.1) takes the form (2.14) on the 
strength of equalities (2.6). We note that equalities (2.4), equivalent to the autonomy 
conditions in (1.2), are satisfied by the Jacobi mechanical system by definition. The 

statement is preserved if assumptions (1.4) and (1.5) are replaced by the following. It 
is sufficient that the variations 6”~ = E (1~~’ + c k”~O (t), v, (t))* satisfy Eqs. (1.3) 
and that the equality 

(xh’ + CkOwO(t)) 0; + v, (t) Q,‘“= 0 (w”(t) = exp s h”(z) cEt ) 
0 

be satisfied for the nonpotential generalized forces. 

9, The existence conditions for the particular invariant (2.14) Simplify for a holo- 
nomic potential system S* satisfying the following conditions. Let the functions (1.1) 

for system S* satisfy the identities 

L* = 0, aL I at = 0, aL,’ 1 az, = 0, aq i ask E 0 (3.1) 
a=l, 2; s=l, 2 9 *. ., p; k=1,2,...,1 



We assume that to the motion z = r (t), z’ = v (t) of subsystem ss* there corre- 

sponds an invariant set of motions of S* , namely, the cylinder z = r (t), z’= v(t). 

Since conditions (1.2) (1.4) and (1.5) are satisfied, system S* is a Jacobi mechanical 
system. 

Let the coordinate I& = chzh be ignorable for L,' and Li’ 

c&&’ / d.%h 3 0, cha&’ / &rk 3 0 (ch = con& c # 0) (3.2) 

We set a (t) 3 0. By virtue of identities (3.1) and (3.2) conditions (2.12) and (2.13) 
are reduced to the two equalities 

(3.3) 

Using the statement obtained, we arrive at the following conclusion for system A!?*, If 
equalities (3.2) and (3.3) are satisfied for ck = ck* and h (t) = h* (t), then the in- 
variant t 

I = L,' + (L,” - L,)"- ck*a(L,'+ L1')/i?zk - 
s h*(r)& (3.4) 
0 

exists along the motion being examined z = T (t), z’ = n (1) of subsystem s,* . 
Systems of form S * include the one considered in [l]. They generalize the latter in the 
following respects. For them the force function is examined in the general form and the 
conditions L,' s o and L,,” z 0 are not needed. In addition, the particular motion 

r (t), v (t) is taken in the general form for sz* and the part of expression (3.4). linear 

with respect to the momenta,is not necessarily a projection [1] of the moment of mo- 
mentum of subsystem S,*. 

4. Examples. Using the results obtained, let us determine the form and the exist- 
ence conditions for invariant (3.4) for two gyrostatic systems in the case S*. As a first 
example we consider a gyrostat S, moving in the gravitational field of a spheroid with 
a fixed center of mass oz. We assume [3] that the spheroid, a rigid body, rotates around 
a fixed symmetry axis ozy. The unit vector y lies in the plane o&c of a fixed trihed- 
ron o&q 5 and makes a constant angle i with the unit vector 6 (cos i = 6. y is the scalar 
product of 6 and 7). The gyrostat S1 is formed [7, 81 by a nondeformable shell S,” 
containing a 2v- dimensional holonomic stationary system S,O with a constant mass 
distribution in S,O. The position of the principal central trihedron olele,e3 of gyrostat 

S1 relative to o&r5 is determined by the radius-vector z := (zl, ~3, z3)* of the center 
of mass of S1 with the projections zj onto o&q5 and with the Euler angles 11) = (pl, 

‘9 -= ‘PZ, 8 = (~3, cp = (91, ‘~2, ~3)’ (i = 1, 2, 3). Th e projections of the vectors (T = 
z ! z i--l and 6 and of the angular velocity o of shell S,O onto o1 e, e2 ea are denoted by 
oh-, &k, c)k (k = 1, 2, 3). The position of system S 2O in S,O is given by the vector q = 

(%P 7 g, = 1, 2, . . ., v. 

Let us assume that the internal forces in ‘S, are determined by a potential N, of the 
form 
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while the forces external to S, have the Newtonian gravitational potential -_c’, (cp, z). 

We accept the usual inequalities I 1 z I-1 -=g 1, If?,-1 -sg 1, m. < M,, where rnO and 1 are 
the mass and maximum dimension of S,, and M,, and Ho are the mass and the polar ra- 
dius of the spheroid. Then with great accuracy we can assume that the rotational motion 

of S, has no influence on its translational motion and that the motion of S, has no in- 
fluence on the rotation of the spheroid. Using this, we separate S, into a subsystem S,’ 
with vector x = (cpj, q,J* and a subsystem S,” for which z = r (t), z’ = v (t) is the 

known motion of the center of mass of S,. The Lagrangian for Sr has the form 

L = 1/2G/rokz + +j + T, + liarno 1 z’ 12 + ‘VI + u, (4.2) 

Ls’ = ‘I~Gkwk’ + ‘~joi + T2, L,’ = 17~~0~ + m,‘q * 

~52~ = 'l29 I z' 12, L," = 0, I,* _ 0, L, = iv,'+ u, 

'j= gja (9) Qp_' 

T2 =l12aap (q) q,'qp', ll%q3ll>o (k.i=l,Z, 3,U,@=i,Z,...v) 

(u < Gk are the principal moments of inertia of Sr) . For the separation being examined 

we obtain the identities (3.1) with due regard to (4.1) and (4.2). Since 8L,’ / l$ = 

8L,’ / l+$ = 0, we have that E1 = cl* is the ignorable coordinate of functions L,’ and 

Lr’. Consequently, S, is a subcase of system S*. Using equalities (3.4), (4.2) and con- 

ditions (3.3), we reach the following conclusion. 
If a function h = h* (t) and a constant cr = cl* # 0 exist for which the inequalities 

aw / at .- cr*aw / 8$ + h*’ (t) = 0 (W = uj (a (Iv, + U,) / L32,)“) (4.3) 
w - cl*av/ w + h, (t) = 0 (V = Lo0 = (iv, + UJ) 

are satisfied along the motion r (t), v (t) , then the rotational motion of gyrostat Sr has 

the invariant t 

1/&kw~2 + kiaj + T2 + 'hmo 1 V I2 + C1*5i (Mi + mi) - Lo” - 1 he (z) do, (40 4) 

0 

M = (Q.h + 4 G2o2 + k,, Go, + k,)* (k, i = I, 2, 3) 

Here we have used notation (4.1) - (4.3) and the equalities 

a&’ / 8$,’ = M-6, c,* = 0 (m = 2, 3, . . ., 2, + 3) 

For S, we consider the case when S, is the Joukowski-Volterra gyrostat [7, 3, lo]. 
s2 is a shell supporting three rotors whose axes have been fastened along Olelr 01% 01% 

Let the shell act on the rotors only by pressure forces on their rotation axes. For S, the 

functions (4.2) and (4.1) have the form 

L = ‘12 (AkW&’ + gk-‘& + m0 1 V 12) + u,, N1 f 0 (4.5) 
0 < gk = ccrlst, Al, = Gk - gk>O, A = diag (A,, A,, A3) 

p = go + k, k = gq’ 
T2 = ‘/2gj-‘kj2, g = diag (gl, g2, g3), q = (qu qzr qd*. Pk (t) = Pk (to) 

Using an approximate expression for the spheroid’s gravitational potential [31, for 

~~-1~~-2 (C, - A ,,) < 1 we obtain the asymptotics U* of force funCtiOn UI 

u* = p Iz I-‘(mo 11 + l/s (C, - A,)Mo-’ x I z 1-2 (1 - 3s2)] + (4.6) 
I z I-’ (Go - “l,P)) 

p==fMoI Co>Ao, S = YkOk = 1 Z I-‘ykzk, 2G, = G, + G, + G,, 1’ = Gkc/$ 
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Here j is Gauss’ constant, C,, and /I0 are the spheroid’s moments of inertia relative 
to the rotation axis ozy and to the equatorial axis. 

Let us consider the following variant of the restricted [9, lo] problem ofthe translation- 

rotational motion of gyrostat Sa. We assume that the center of mass of S, moves with 

Keplerian angular velocity mn = I_C ‘lzrO-‘~~ on a circle of constant radius ( z 1 = r. in the 
plane o&q ; the vector y lies in the plane osE; and makes a constant angle i with the 
unit vector f, . This motion is the approximate solution 

z1 = rl (t) = r. cos T. z2 = r2 (t) = r. sin t, z3 = I.3 (t) = 0 
Z = W. (t - to) + uo, to = const, u. = const 

of the equations of motion of the center of mass of gyrostat .S, 

(4.7) 

/?‘,Zj r- $i:, /I d.Zj (; mL 1, 2, 3) 

which in the restricted formulation can be considered as the exact solution. The latter, 

together with u1 replaced by function (4.6), serves as the initial assumptions of the vari- 
ant being examined of the restricted problem. 

We set 
Cl * : -+jo, II* = 3/‘200s (C, - AO)~OMo-l sin2 i sin 22 

into conditions (4.3). Substituting expressions (4.5) - (4.7) into them, we see that equal- 
ities (4.3) are satisfied. Therefore, the particular Jacobi invariant [l] 

Z = 1/2Akok2 - coo: . (A o + p) + 3/~~02G~u~2 (4.8) 

exists in the case being examined for the motion of S, We obtain expression (4.8) from 
(4.4) with due regard to equalities (4.5) - (4.7). Thus, in this variant of the motion of 
S, the existence conditions (4.3) for invariant (4.8) are satisfied. We note that expres- 
sion (4.8), obtained under the asymptotics (4.6) of the noncentral gravitational field, 
coincides with the generalized energy integral [9, lo] in the case of a central field. 
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